Abstract

InxGa1-xN alloys (0 ≤ x ≤ 1) have been grown on GaN/sapphire templates by molecular beam epitaxy. Growth temperature controlled epitaxy was proposed to modulate the In composition so that each InxGa1-xN layer was grown at a temperature as high as possible and thus their crystalline quality was improved. The bandgap energies of the InxGa1-xN alloys have been precisely evaluated by optical transmission spectroscopy, where the effect of residual strain and electron concentration (the Burstein-Moss effect) on the bandgap energy shift has been considered. Finally, a bowing parameter of ∼1.9 ± 0.1 eV has been obtained by the well fitting In-composition dependent bandgap energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call