Abstract

Describes the application of modern tools from robust control theory to the design of high-performance multivariable temperature controllers for diffusion furnaces. The process is modeled from input-output data, collected in an identification experiment at the desired operating conditions. An important component of the identification is the computation of uncertainty bounds describing the confidence limits of the model, in a manner consistent with robust control theory. The identification results are then used to design an H-infinity controller with a cascade, hierarchical structure. The gain-scheduling of several linear controllers is also investigated in an effort to achieve good performance in a wide range of operating conditions. Experimental results demonstrate the success of the approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.