Abstract

The paper describes an integrated approach for modeling and robust multivariable controller design, with application to temperature control of diffusion and CVD furnaces. The modeling relies on input-output data, collected in a preliminary identification experiment at the desired operating conditions. An important component of the identification is the computation of uncertainty bounds that describe the confidence limits of the model, in a manner consistent with robust control theory. The results of the identification are then used to design an H-infinity controller with a cascade, hierarchical structure. The final implementation of the controller also includes mechanisms to prevent integrator wind-up. Special emphasis is placed on automating the procedure-for classes of furnaces-so that, potentially, it can be used by nonexperts in the field. Implementations include several industrial furnaces. Experimental results demonstrate the success of the approach as well as a good agreement between predicted and actual closed-loop behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.