Abstract
The influence of film structure on temperature characteristics of polysilicon nanofilms (PSNFs) was reported in this paper. Samples were deposited by LPCVD with different film thickness and deposition temperature. The microstructure of films was characterized by SEM, TEM and XRD. By measuring the resistivity and the gauge factor of samples at different temperatures, temperature coefficients of the resistance and the gauge factor (TCR and TCGF) were investigated. Based on the analysis of tunneling piezoresistive effect, the results indicated that PSNFs of ultrahigh doping concentration (around 3times1020 cm-3) have better piezoresistive temperature characteristics than single crystal silicon. By controlling the process parameters like deposition temperature and film thickness, film structure was optimized to obtain a very low resistance temperature coefficient (about plusmn10-4/degC). Moreover TCGF was negative and almost not affected by deposition temperature and film thickness. These conclusions are useful for temperature compensation of polysilicon pressure sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.