Abstract

The yield stress behavior of a range of polyethylene materials which differ with respect to their short chain branch content has been studied. Measurements carried out over a wide range of temperatures have shown that there is a sudden transition in the behavior of the yield stress at a temperature which is dependent on both the grade of material and the applied strain rate. These results are in agreement with previous results found from analysis of the yield strain behavior. Above the transition temperature the materials all behave in a nonlinear viscoelastic manner, and the yield process is considered as being propagation controlled. Below the transition temperature the materials all behave in an elastic-plastic manner, and the yield process is considered as being nucleation controlled. Below the transition temperature the temperature dependence of the yield stress is determined by the thickness of the crystalline lamellae. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2177–2189, 1998

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.