Abstract

This paper describes the tensile strength and inelastic constitutive relationship of six types of Sn-Pb solders. Static tension tests were carried using 5Sn-95Pb, 10Sn-90Pb, 40Sn-60Pb, 60Sn-40Pb, 63Sn-37Pb, and 62Sn-36Pb-2Ag solders at the strain rates of 0.001–10.0%/s between temperatures of 313 K and 398 K. Strain rates faster than 2.0%/s were needed to obtain the time-independent Young modulus and yield stress of the solders. Tensile strength increased with increasing strain rates up to 10%/s. Parametric equations for predicting tensile strength, Young’s modulus and yield stress of Sn-Pb solders were developed as a function of temperature and Sn content. Plastic and creep constitutive equations were also proposed as a function of temperature and Sn content. The stress amplitude predicted by these equations agreed with the experimental results within ±2 MPa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call