Abstract

ABSTRACTAn umbrella handle product of polypropylene molded by gas‐assisted injection molding (GAIM) was studied from both aspects: theoretical modeling and simulation as well as in situ temperature measurement. The simulation was primarily through the use of the commercial software Moldflow (version 6.1) coupled with enthalpy transformation method (ETM) in an attempt to investigate the shear rate and temperature fields during GAIM process. A four‐parameter model (FPM) was used to nonlinearly fit the temperature decays during the GAIM cooling stage on the basis of a three‐parameter model (TPM) raised previously in our group. The FPM showed perfect fitting effect as well as presented fairly acceptable cooling time (tc) prediction in comparison to experimental data, which could better reflect the nature of crystalline polymers during melt crystallization process. The understanding of the shear rate and temperature fields would be of practical importance to the further research on relationship of “processing–structure–property” as well as the optimization of cooling parameters for industrial GAIM operations of crystalline polymers. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47390.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.