Abstract

Temperature and salinity are important environmental factors affecting the normal functioning of marine animals, particularly animals such as sea urchins living in shallow waters and tide pools. Here, we evaluated the effect of different combinations of temperature and salinity on early embryos of the endemic New Zealand sea urchin Evechinus chloroticus. Animals were collected at Matheson’s Bay (36o18′17′′S; 174o47′51′′E) in north-eastern New Zealand in February 2013. Embryos were exposed to five salinities (29, 31, 34, 35 and 37 ppt) and two temperatures (18 and 21 °C) during the first 24 h of development. Low salinity (29 ppt) affected all parameters (fertilization, development rate, gastrulation and normal development), with ca. 50 % of embryos surviving at 29 ppt, whereas seawater temperature only affected development rate and gastrulation. An increase in temperature from 18 to 21 °C minimized the negative effect of low salinity (≤31 ppt) on development rate and gastrulation of E. chloroticus. Overall, the results of this study suggest that early embryos of E. chloroticus have developmental plasticity to withstand reductions in salinity up to 29 ppt; however, it is still unknown whether the surviving embryos will be able to complete larval development at low salinities, particularly whether the embryos and larvae are carried into extreme environments such as estuaries where salinity is even lower. Multistressor studies are very important for climate change research as multiple environmental factors will act together in the wild, having major consequences for development and recruitment of marine invertebrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.