Abstract
Store-operated calcium entry (SOCE) is an important Ca2+ entry pathway in skeletal muscle. However, direct electrophysiological recording and full characterization of the underlying SOCE current in skeletal muscle cells (ISkCRAC) has not been reported. Here, we characterized the biophysical properties, pharmacological profile, and molecular identity of ISkCRAC in skeletal myotubes, as well as the regulation of its rate of activation by temperature and the type I ryanodine receptor (RyR1). ISkCRAC exhibited many hallmarks of Ca2+ release activated Ca2+ currents (ICRAC): store dependence, strong inward rectification, positive reversal potential, limited cesium permeability, and sensitivity to SOCE channel blockers. ISkCRAC was reduced by siRNA knockdown of stromal interaction molecule 1 and expression of dominant negative Orai1. Average ISkCRAC current density at −80mV was 1.00 ± 0.05 pA/pF. In the presence of 20 mM intracellular EGTA, ISkCRAC activation occurred over tens of seconds during repetitive depolarization at 0.5Hz and was inhibited by treatment with 100 μM ryanodine. The rate of SOCE activation was reduced threefold in myotubes from RyR1-null mice and increased 4.6-fold at physiological temperatures (35–37°C). These results show that ISkCRAC exhibits similar biophysical, pharmacological, and molecular properties as ICRAC in nonexcitable cells and its rate of activation during repetitive depolarization is strongly regulated by temperature and RyR1 activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.