Abstract

Classic Cabrera-Mott theory stipulates that the limited oxide-film growth results from electron tunneling from the metal through the oxide film to adsorbed oxygen. This leads to an electric field across the oxide film that assists ion migration for low-temperature oxide-film growth. Here, we show that the field-driven oxide-film growth can be manipulated via the temperature and pressure of oxidation. The magnitude of the self-generated electric field depends on the oxygen surface coverage that exhibits a Langmuir isotherm behavior with changes in temperature and oxygen pressure. These observations demonstrate the ability to tune an interfacial reaction via self-adaptation to its environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call