Abstract

The catalytic activity of single chamber solid oxide fuel cells (SC-SOFCs) with respect to hydrocarbon fuels induces a major overheating of the fuel cell, temperature variations along its length, and changes in the original fuel/air composition mainly over the anode component. This paper assesses the temperature gradients and the variations in performance along electrolyte-supported Ni-YSZ/YSZ/LSM cells fed with methane gas. The investigations are performed in a useful range of CH 4/O 2 ratios between 1.0 and 2.0, in which the furnace temperature and flow rate of methane–air mixtures are held constant at 700 °C and 450 sccm, respectively. Electrochemical impedance spectroscopy (EIS) is used to sense the temperature at the location where smaller size cathodes are positioned on the opposite side of a full-size anode. Due to temperature increases, cells always perform better when the small cathodes are located at the inlet as well as at a CH 4/O 2 ratio of 1.0. With an increase in ratio, the results show the presence of artefacts due to the use of an active LSM material for the combustion of methane, and open-type gas distribution plates for the single chamber reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.