Abstract

Anthropogenic increases in temperature and nutrient loads will likely impact food web structure and stability. Although their independent effects have been reasonably well studied, their joint effects-particularly on coupled ecological and phenotypic dynamics-remain poorly understood. Here we experimentally manipulated temperature and nutrient levels in microbial food webs and used time-series analysis to quantify the strength of reciprocal effects between ecological and phenotypic dynamics across trophic levels. We found that (1) joint-often interactive-effects of temperature and nutrients on ecological dynamics are more common at higher trophic levels, (2) temperature and nutrients interact to shift the relative strength of top-down versus bottom-up control, and (3) rapid phenotypic change mediates observed ecological responses to changes in temperature and nutrients. Our results uncover how feedback between ecological and phenotypic dynamics mediate food web responses to environmental change. This suggests important but previously unknown ways that temperature and nutrients might jointly control the rapid eco-phenotypic feedback that determine food web dynamics in a changing world.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.