Abstract

Food webs capture the trophic relationships and energy fluxes between species, which has fundamental impacts on ecosystem functioning and stability. Within a food web, the energy flux distribution between a predator and its prey species is shaped by food quantity-quality trade-offs and the contiguity of foraging. But the distribution of energy fluxes among prey species as well as its drivers and implications remain unclear. Here we used 157 aquatic food webs, which contain explicit energy flux information, to examine whether a predator's foraging is asymmetric and biased towards lower or higher trophic levels, and how these patterns may change with trophic level. We also evaluate how traditional topology-based approaches may over- or under-estimate a predator's trophic level and omnivory by ignoring the asymmetric foraging patterns. Our results demonstrated the prevalence of asymmetric foraging in natural aquatic food webs. Although predators prefer prey at higher trophic levels with potentially higher food quality, they obtain their energy mostly from lower trophic levels with a higher food quantity. Both tendencies, that is, stronger feeding preference for prey at higher trophic levels and stronger energetic reliance on prey at lower trophic levels are alleviated for predators at higher trophic levels. The asymmetric foraging lowers trophic levels and omnivory at both species and food web levels, compared to estimates from traditional topology-based approaches. Such overestimations by topology-based approaches are most pronounced for predators at lower trophic levels and communities with higher number of trophic species. Our study highlights the importance of energy flux information in understanding the foraging behaviour of predators as well as the structural complexity of natural food webs. The increasing availability of flux-based food web data will thus provide new opportunities to reconcile food web structure, functioning and stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.