Abstract

We have studied the transport properties of electron- and hole-dominated MEH-PPV, poly(2-methoxy,5-(2′-ethyl-hexoxy)-p-phenylene vinylene), devices in the trap-free limit and have derived the temperature-dependent electron and hole mobilities (μ=μ0eγ√E) from the space-charge-limited behavior at high electric fields. Both the zero-field mobility μ0 and electric-field coefficient γ are temperature dependent with an activation energy of the hole and electron mobility of 0.38±0.02 and 0.34±0.02 eV, respectively. At 300 K, we find a zero-field mobility μ0 on the order of 1±0.5×10−7 cm2/V s and an electric-field coefficient γ of 4.8±0.3×10−4 (m/V)1/2 for holes. For electrons, we find a μ0 an order of magnitude below that for holes but a larger γ of 7.8±0.5×10−4 (m/V)1/2. Due to the stronger field dependence of the electron mobility, the electron and hole mobilities are comparable at working voltages in the trap-free limit, applicable to thin films of MEH-PPV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.