Abstract

The information indicating device plays an important part in the information times. Recently, the classical CRT (Cathod Ray Tube) display is getting transferred to the LCD (Liquid Crystal Display) one which is a kind of the FPDs (Flat Panel Displays). The OLED (Organic Light Emitting Diodes) display of the FPDs has many advantages for the low power consumption, the luminescence in itself, the light weight, the thin thickness, the wide view angle, the fast response and so on as compared with the LCD one. The OLED has lately attracted considerable attention as the next generation device for the information indicators. And also it has already been applied for the outside panel of a mobile phone, and its demand will be gradually increased in the various fields. It is manufactured by the vapor deposition method in the vacuum state, and the uniformity of thin film on the substrate depends on the temperature distribution in the point-cell source. This paper describes the basic concepts that are obtained to design the point-cell source using the computational temperature analysis. The grids are generated using the module of AUTOHEXA in the ICEM CFD program and the temperature distributions are numerically obtained using the STAR-CD program. The temperature profiles are calculated for four cases, i.e., the charge rate for the source in the crucible, the ratio of diameter to height of the crucible, the ratio of interval to height of the heating bands, and the geometry modification for the basic crucible. As a result, the blowout phenomenon can be shown when the charge rate for the source increases. The temperature variation in the radial direction is decreased as the ratio of diameter to height is decreased and it is suggested that the thin film thickness can be uniformed. In case of using one heating band, the blowout can be shown as the higher temperature distribution in the center part of the source, and the clogging can appear in the top end of the crucible in the lower temperature. The phenomena of both the blowout and the clogging in the modified crucible with the nozzle-diffuser can be prevented because the temperature in the upper part of the crucible is higher than that of other parts and the temperature variation in the radial direction becomes small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.