Abstract

The molecular dynamics simulation of the normal incidence of a Cu3 cluster with an energy of 0.2–1 eV/atom on a Cu(100) substrate at an equilibrium temperature of 500–700 K is performed. This substrate contains a rectilinear step, whose height is one atomic layer. After 20-ps relaxation of the atomic cluster on the substrate, its further thermally activated motion on the surface is simulated using the method of temperature- accelerated molecular dynamics. The Cu3 cluster mainly demonstrates rotational-translational motion. The time interval between two successive atomic transitions of the cluster is found to be reduced as the distance to the step is decreased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.