Abstract

The glutamate exchanger xCT (SLC7a11) is causally linked with the malignancy grade of brain tumors and represents a key player in glutamate, cystine and glutathione metabolism. Although blocking xCT is not cytotoxic for brain tumors, xCT inhibition disrupts the neurodegenerative and microenvironment-toxifying activity of gliomas. Here, we report on the use of various xCT inhibitors as single modal drugs and in combination with the autophagy-inducing standard chemotherapeutic agent temozolomide (Temodal/Temcad®, TMZ). xCT overexpressing cells (xCTOE) are more resistant to the FDA and EMA approved drug sulfasalazine (Azulfidine/Salazopyrin/Sulazine®, SAS) and RNAi-mediated xCT knock down (xCTKD) in gliomas increases the susceptibility towards SAS in rodent gliomas. In human gliomas, challenged xCT expression had no impact on SAS-induced cytotoxicity. Noteworthy, other xCT inhibitors such as erastin and sorafenib showed enhanced efficacy on xCTKD gliomas. In contrast, cytotoxic action of TMZ operates independently from xCT expression levels on rodent gliomas. Human glioma cells with silenced xCT expression display higher vulnerability towards TMZ alone as well as towards combined TMZ and SAS. Hence, we tested the partial xCT blockers and ferroptosis inducing agents erastin and sorafenib (Nexavar®, FDA and EMA-approved drug for lung cancer). Noteworthy, xCTOE gliomas withstand erastin and sorafenib-induced cell death in a concentration-dependent manner, whereas siRNA-mediated xCT knock down increased susceptibility towards erastin and sorafenib. TMZ efficacy can be potentiated when combined with erastin, however not by sorafenib. Moreover, gliomas with high xCT expression are more vulnerable towards combinatorial treatment with erastin-temozolomide. These results disclose that ferroptosis inducers are valid compounds for potentiating the frontline therapeutic agent temozolomide in a multitoxic approach.

Highlights

  • Malignant gliomas are the most lethal primary brain tumor in children and adults

  • We report on the use of various xCT inhibitors as single modal drugs and in combination with the autophagy-inducing standard chemotherapeutic agent temozolomide (Temodal/Temcad®, TMZ). xCT overexpressing cells are more resistant to the FDA and EMA approved drug sulfasalazine (Azulfidine/Salazopyrin/ Sulazine®, SAS) and RNAi-mediated xCT knock down in gliomas increases the susceptibility towards SAS in rodent gliomas

  • We found that F98 xCT knock down (xCTKD) cells secrete significantly less glutamate compared to F98 xCT overexpressing cells (xCTOE) cells (Figure 1B)

Read more

Summary

Introduction

The median survival time from diagnosis on is approximately 14 months [1, 2]. The current standard of care for newly diagnosed GBM in patients includes surgery as a first-line therapy, followed by radiotherapy and adjuvant temozolomide (TMZ) treatment. This regiment confers still a median survival time of only 14.6 months compared with 12.2 www.impactjournals.com/oncotarget months for patients receiving radiotherapy alone [1]. Temozolomide (TMZ, brand names Temodal® or Temcad®) offers some hope to GBM patients with increasing progression free and overall survival of a few months, a best 5-year survival rate of only 9.8% is currently achieved

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call