Abstract

The local microstructure of Fe–Ga nanowires is investigated considering dependence on the deposition technique. Using a complexed electrolyte, smooth and homogeneous Fe80Ga20 nanowires are deposited into anodic aluminum oxide templates by either applying pulse potential or potentiostatic deposition technique. At optimized deposition conditions the wires show the desired composition of Fe80±2Ga20±2 without a gradient along the growth direction. Composition distribution, structure and microstructure are examined in detail and reveal only minor differences. Line EELS and crystal lattice measurements reveal a negligible oxygen content for both preparation routines. Neither Fe/Ga oxides nor hydroxides were found. Both potentiostatically deposited as well as pulse deposited nanowires exhibit a preferred 〈110〉 orientation, the latter with slightly larger crystals. Different contrast patterns were found by TEM that appear more pronounced in the case of pulse deposited wires. High resolution transmission electron microscopy analysis and comparison of differently prepared focused ion beam lamellas reveal that these contrasts are caused by defects in the alternating potential deposition itself and are not induced during the TEM preparation process. The alternating potential mode causes periodic growth thereby inducing different layers with reduced wire thickness/defects at the layer interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.