Abstract

Robertsonian rearrangements demonstrate one-break chromosome rearrangement and the reversible appearance and disappearance of telomeres and centromeres. Such events are quite discordant with classical cytogenetic theories, which assume all chromosome rearrangements to require at least two breaks and consider centromeres and telomeres as immutable structures rather than structures determined by mutable DNA sequences. Cytogenetic data from spontaneous and induced telomere-telomere fusions in mammals support a molecular model of terminal DNA synthesis in which all telomeres are similar and recombine before replication and subsequent separation. This, along with evidence for a hypothetical DNA sequence, the kinetochore organizer, readily explains latent telomeres, latent centromeres, and reversible (one-break) Robertsonian rearrangements. A second model, involving simply recombination between like satellite DNA sequences on different chromosomes, explains not only how one satellite can simultaneously evolve on different chromosomes, but also why satellite DNA is usually located near centromeres or telomeres and why it maintains a preferred orientation with respect to the centromere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.