Abstract
Remote teleoperation of a robot manipulator by a human operator is often necessary in unstructured dynamic environments when human presence at the robot site is undesirable. Mechanical and other contacting interfaces used in teleoperation require unnatural human motions for object manipulation tasks or they may hinder human motion. Previous vision-based approaches have used only a few degrees of freedom for hand motion and have required hand motions that are unnatural for object manipulation tasks. This paper presents a noncontacting vision-based method of robot teleoperation that allows a human operator to communicate simultaneous six-degree-of-freedom motion tasks to a robot manipulator by having the operator perform the three-dimensional human hand-arm motion that would naturally be used to complete an object manipulation task. A vision-based human-robot interface is used for communication of human motion to the robot and for feedback of the robot motion and environment to the human operator. Teleoperation under operator position control was performed with high accuracy in object placement on a target. Semi-autonomous traded and shared control using robot-vision guidance aided in achieving a more accurate positioning and orientation of the end-effector for object gripping tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.