Abstract

PurposeThe purpose of this paper is to present a design and verification through experiments of teleoperation of the 3 degrees‐of‐freedom micromanipulation system (MMS), in laboratory conditions.Design/methodology/approachThe MMS is constructed from piezoelectric actuators sited in a flexure hinge mechanism. The nonlinearity, especially hysteresis, due to a voltage steering scheme is compensated for, via a second‐order Dahl friction model. A simple mechanical model is then constructed to capture the behavior of the MMS. Redundant force feedback sensors are applied to the MMS in order to achieve flexible operation via the so‐called fault‐tolerancing mechanism. Finally, a teleoperation scheme based on passivity formalism is proposed to achieve a stable teleoperation system.FindingsThe hysteresis curve due to voltage steering can be minimized. The fault‐tolerancing concept using redundant sensors for comfortable use of the MMS has been successfully performed. The teleoperated MMS via a commercially available PHANToM® has been conducted under ineligible telecommunication channel delay.Originality/valueThe details of design, modelling and experimentations of the teleoperation of the MMS should promote the applicability of similar systems in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.