Abstract

The introduction of robot-assisted surgery into the operating room has revolutionized the medical field. These systems not only have the advantages of traditional minimally invasive surgery (MIS), such as reduced patient trauma and recovery time, lower morbidity, and lower health care costs, but they also eliminate surgeon tremor, reduce the effects of surgeon fatigue, and incorporate the ability to perform remote surgical procedures. However, current robotic surgical systems, such as the Da Vinci™ Surgical System, lack the capability of providing force feedback to the surgeon that is present in conventional surgery. Therefore, this lack of force feedback presents excellent developmental opportunities for surgeons and engineers to create novel surgical tools and methods to incorporate force feedback capabilities into these robotic surgical systems. The goal of this research is to restore force feedback capability to the surgeon in robot-assisted surgery through a haptic interaction experience involving force feedback from the surgical site using our novel teleoperation platform. This dissertation will summarize our research including: 1) the development of an automated laparoscopic grasper with force sensing capabilities, 2) a novel seven degree-of-freedom (DOF) haptic device with 4 degrees of force feedback with direct applications to robot-assisted surgery, 3) human subject studies to evaluate the addition of force feedback to robotic soft tissue characterization, 4) integration of the Mitsubishi PA-10 robot arm and laparoscopic grasper with a seven degree-of-freedom haptic device as a teleoperation platform, and 5) preliminary teleoperation experiments to evaluate the force feedback capabilities of the platform. Our results show the addition of force feedback to robot assisted surgery leads to better tissue characterization than using only vision feedback. In addition, providing force feedback in our teleoperation platform lowers the peak forces in surgical knot tying tasks.%%%%Ph.D., Mechanical Engineering – Drexel University, 2007

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.