Abstract

In this paper, we designed a 8 degrees of freedom (DOFs) haptic device for applications in minimally invasive surgical robot. The device can provide three translational, three rotational and a grasping motion and force feedback capability. It is composed of three parts, including an arm mechanism, a redundant wrist mechanism and a grasper mechanism. The kinematics and gravity compensation algorithms are also detailed in the paper. In addition, the haptic device and a slave surgical robot for minimally invasive surgery (MIS) developed by our lab are integrated as a master-slave surgical robotic system in this paper. In the master-slave robotic system, a new control system is designed to realize real-time mater-slave control based on EtherCAT bus technology. Experiments show that the haptic device can effectively compensate gravity at any position in its workspace and successfully realize master-slave operation by the control method, which prove the haptic device designed in this paper can be used as a master manipulator to control the surgical robot.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.