Abstract

This study aims to explore the effect of Tectorigenin in chronic cerebral ischemia (CCI)-induced cognitive impairment mice model. Cognitive impairment, hippocampal tissue histopathology, and myelin density in CCI mice were detected. HT22 cells were used to induce oxygen-glucose deprivation/reperfusion (OGD/R) injury. Cell viability and apoptosis of transfected HT22 cells and toll-like receptor-4 (TLR4)/nuclear factor-kappaB (NF-κB) pathway-related factor levels in hippocampal tissue and OGD/R models were detected. CCI caused cognitive impairment, hippocampal damage, and decreased myelin density in mice while promoting interleukin-1β, tumor necrosis factor-alpha, TLR4, myeloid differentiation primary response gene 88, p-p65, NLRP3, and ASC levels. Tectorigenin reversed the effects of CCI in mice and reversed the promoting effects of OGD/R on apoptosis and TLR4/NF-κB pathway-related factors levels, while overexpressed TLR4 reversed the effects of Tectorigenin in OGD/R-induced HT-22 cells. Tectorigenin alleviated cognitive impairment in CCI mice by inhibiting the TLR4/NF-κB signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.