Abstract
Children with multiple exposures to anesthesia and surgery may have an increased risk of developing cognitive impairment. Sevoflurane is a commonly used anesthetic in children. Tau phosphorylation contributes to cognitive dysfunction. The authors therefore assessed the effects of sevoflurane on Tau phosphorylation and the underlying mechanisms in young mice. Six-day-old wild-type and Tau knockout mice were exposed to sevoflurane. The authors determined the effects of sevoflurane anesthesia on Tau phosphorylation, levels of the kinases and phosphatase related to Tau phosphorylation, interleukin-6 and postsynaptic density protein-95 in hippocampus, and cognitive function in both young wild-type and Tau knockout mice. Anesthesia with 3% sevoflurane 2 h daily for 3 days induced Tau phosphorylation (257 vs. 100%, P = 0.0025, n = 6) and enhanced activation of glycogen synthase kinase 3β, which is the kinase related to Tau phosphorylation in the hippocampus of postnatal day-8 wild-type mice. The sevoflurane anesthesia decreased hippocampus postsynaptic density protein-95 levels and induced cognitive impairment in the postnatal day-31 mice. Glycogen synthase kinase 3β inhibitor lithium inhibited the sevoflurane-induced glycogen synthase kinase 3β activation, Tau phosphorylation, increased levels of interleukin-6, and cognitive impairment in the wild-type young mice. Finally, the sevoflurane anesthesia did not induce an increase in interleukin-6 levels, reduction in postsynaptic density protein-95 levels in hippocampus, or cognitive impairment in Tau knockout young mice. These data suggested that sevoflurane induced Tau phosphorylation, glycogen synthase kinase 3β activation, increase in interleukin-6 and reduction in postsynaptic density protein-95 levels in hippocampus of young mice, and cognitive impairment in the mice. Future studies will dissect the cascade relation of these effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.