Abstract

A lithosphere-scale extensional shear zone juxtaposes an underlying sub-continental peridotite body and overlying migmatitic paragneisses of the Filali unit in the Beni Bousera massif (Internal Rif, Morocco). Three stages are recognized in the metamorphic evolution of the aluminous paragneiss, marked by the chemical zoning of garnet porphyroblasts and the evolution of associated mineral assemblages characterized by the presence of kyanite and rutile (M1), sillimanite, k-feldspar and melt (M2), and cordierite (M3). Phase-equilibrium modeling (pseudosections) and multi-equilibrium thermobarometry point to P-T conditions of 7 kbar 750 °C and 3.5 kbar 685 °C for the M2 and M3 stages, respectively. M1 conditions of 9.3 kbar 660 °C were inferred using modeling after the reintegration of melt lost during M2 into the bulk composition. Published geochronological data suggest a Variscan age (250–340 Ma) for the M1 event, whereas M2 and M3 are Oligo-Miocene and related to the Alpine orogeny. The recorded sub-isothermal decompression is related to significant crustal attenuation in the Oligo-Miocene and is responsible for the juxtaposition of the hot asthenospheric mantle and the crustal units, causing the melting of the paragneiss. The exhumation of the gneisses by crustal extension is associated with the westward retreat of an Alpine subduction (slab rollback).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.