Abstract

This study focuses on a geological section in the Jura Mountains across the villages of Travers, La Brévine in Switzerland, and Morteau in France. Field mapping was conducted to complement and densify existing data. A kinematically and geometrically consistent forward model has been developed to understand and interpret the observed surface structures. The proposed solution features a low-angle thrust fault with a multiple ramp-flat or staircase trajectory on which several hinterland-verging thrusts nucleate. The main décollement level is located in the Triassic evaporites of the Keuper and Muschelkalk Groups. Our model implies secondary detachments in the Opalinus Clay and the Cretaceous layers leading to repetitions in the Mesozoic cover rocks over large distances. This in turn explains the high topographic position of exposed sediments. The proposed solution is an alternative to models showing overthickening of Triassic evaporites associated with a single detachment level. Along the investigated profile, the Jura Mountains accommodate a shortening of 8.5 km. The kinematic forward model suggests an oscillating sequence of thrusting, rather than a simple, in sequence, forward propagation succession of thrusts.

Highlights

  • The Jura Mountains are the north-northwestern foreland fold-and-thrust belt related to the Alpine orogeny (Buxtorf 1907; Burkhard and Sommaruga 1998)

  • This study focuses on a geological section in the Jura Mountains across the villages of Travers, La Brevine in Switzerland, and Morteau in France

  • The relatively high structural and topographic elevation of the Mesozoic and Cenozoic series between the Morteau thrust and the Couvet backthrust is a major feature of this area

Read more

Summary

Introduction

The Jura Mountains are the north-northwestern foreland fold-and-thrust belt related to the Alpine orogeny (Buxtorf 1907; Burkhard and Sommaruga 1998). The latter is associated to the closure of the Alpine Tethys induced by the subduction of the European plate towards the south and the subsequent collision with the Adriatic plate (Escher and Beaumont 1997; Stampfli et al 1998; Stampfli and Borel 2002). The Jura Mountains are surrounded by three Cenozoic sedimentary basins (see Fig. 1).

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call