Abstract

We report on the development of W-band (75–110 GHz) heterodyne receiver technology for large-format astronomical arrays. The receiver system is designed to be both mass producible, so that the designs could be scaled to thousands of receiver elements, and modular. Most of the receiver functionality is integrated into compact monolithic microwave integrated circuit (MMIC) amplifier-based multichip modules. The MMIC modules include a chain of InP MMIC low-noise amplifiers, coupled-line bandpass filters, and sub-harmonic Schottky diode mixers. The receiver signals will be routed to and from the MMIC modules on a multilayer high-frequency laminate, which includes splitters, amplifiers, and frequency triplers. A prototype MMIC module has exhibited a band-averaged noise temperature of 41 K from 82 to 100 GHz and a gain of 29 dB at 15 K, which is the state-of-the-art for heterodyne multichip modules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call