Abstract
Applications such as brain-machine interfaces require hardware spike sorting in order to 1) obtain single-unit activity and 2) perform data reduction for wireless data transmission. Such systems must be low-power, low-area, high-accuracy, automatic, and able to operate in real time. Several detection, feature-extraction, and dimensionality-reduction algorithms for spike sorting are described and evaluated in terms of accuracy versus complexity. The nonlinear energy operator is chosen as the optimal spike-detection algorithm, being most robust over noise and relatively simple. Discrete derivatives is chosen as the optimal feature-extraction method, maintaining high accuracy across signal-to-noise ratios with a complexity orders of magnitude less than that of traditional methods such as principal-component analysis. We introduce the maximum-difference algorithm, which is shown to be the best dimensionality-reduction method for hardware spike sorting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Systems and Rehabilitation Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.