Abstract

PurposePresently there exists no way to directly measure strain at high temperatures in engine components such as the combustion chamber, exhaust nozzle, propellant lines, and turbine blades and shaft. The purpose of this paper is to address this issue.Design/methodology/approachThermomechanical fatigue (TMF) prediction, which is a critical element for a blade design, is a strong function of the temperature and strain profiles. Major uncertainties arise from the inability of current instrumentation to measure temperature and strain at critical locations. This prevents the structural designer from optimizing the blade design for high temperature environments, which is a significantly challenging problem in engine design.FindingsBeing able to directly measure strains in different high temperature zones would deeply enhance the effectiveness of aircraft propulsion systems for fatigue damage assessment and life prediction. The state of the art for harsh environment, high temperature sensors has improved considerably over the past few years.Originality/valueThis paper lays down specifications for high temperature sensors and provides a technological assessment of these new sensing technologies. The paper also reviews recent advances made in harsh environment sensing systems and takes a peek at the future of such technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.