Abstract

A step function model with time is presented in the paper, and an axisymmetric component is regarded as the study objective in this model. The heat transfer coefficient during the gas quenching process is described as a function of time in this model, and five design variables are selected to do the design of Box–Behnken experiment with five factors and three levels. The levels of design variables that attain from the result of Box–Behnken experiment design are regard as the technical parameters of gas quenching to simulate the gas quenching process using the FEM software developed in the paper. Some mathematical models of response surface are gained by the mixed regression method and response surface method. These mathematical models show the dependencies of distortion, surface average equivalent residual stress, standard deviation of equivalent residual stress, average surface hardness and standard deviation of surface hardness with respect to the design variables. The optimization model is presented with the distortion as the optimization objective, and the model is optimized with an upper limit, a lower limit and the constraint function by the non-linear method and the Lagrange multiplier method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.