Abstract

A techno-economic optimization of a commercial-scale, amine-based, post-combustion CO2 capture process is carried out. The most economically favorable process configuration, sizing and operating conditions are identified using a superstructure formulation. The superstructure has 12 288 possible process configurations and unit operations in the superstructure are described using rigorous, rate-based models. In order to simplify the optimization problem, the problem is decomposed and process simulations are explicitly handled in the process simulator. Optimization is performed externally using a genetic algorithm. The best found process configuration includes the absorber intercooling, the rich vapor recompression, and the cold solvent split. The result of this study is compared in terms of the cost of capture basis and shows 38% reduction on the annual operation cost, compared to the conventional amine-based CO2 capture process. Moreover, the savings on the total annualized cost is ∼13%, which is an increa...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.