Abstract

2,5-Furandicarboxylic acid (FDCA) is a platform chemical for polyethylene furanoate (PEF) manufacturing, a promising biobased and green alternative to polyethylene terephthalate (PET) with a market size of 1.8 million tonne/annum. There are several routes to produce FDCA, all through 5-hydroxymethylfurfural (HMF) conversion. The traditional thermochemical process is highly energy intensive with a low yield. The electrocatalytic pathway, on the other hand, is gaining increased interest for it makes the process control more efficient, achieves a higher yield, and more importantly can be driven by renewable electricity to lower the environmental impact compared to the thermochemical process. This study assesses the economic aspects and environmental impacts of the electrochemical production of FDCA. It is found that the net present value (NPV) of the integrated electrochemical conversion and product separation plant is highly profitable, $72 million for 100 tonne/day production of FDCA, under optimistic conditions. It also reveals that the HMF price has significant impact on process economics, and the current density has the largest scope of improvement. The life-cycle assessment (LCA) results indicate that processes related to HMF production contribute the most to the overall environmental impacts─calling for low impact HMF production processes, with cost reductions─however, the impacts of the electrochemical route are much lower in comparison with the thermochemical route.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call