Abstract

The biotechnological production of the carotenoid astaxanthin is done with the microalgae Haematococcus pluvialis (H. pluvialis). Under nutrient deficiency and light stress, H. pluvialis accumulates astaxanthin intracellularly and forms a resistant cyst cell wall that impedes direct astaxanthin extraction. Therefore, a complex downstream process is required, including centrifugation, mechanical cell wall disruption, drying, and supercritical extraction of astaxanthin with CO2. In this work, an alternative downstream process based on the direct extraction of astaxanthin from the algal broth into ethyl acetate using a centrifugal partition extractor (CPE) was developed. A mechanical cell wall disruption or germination of the cysts was carried out to make astaxanthin accessible to the solvent. Zoospores containing astaxanthin are released when growth conditions are applied to cyst cells, from which astaxanthin can directly be extracted into ethyl acetate. Energy-intensive unit operations such as spray-drying and extraction with supercritical CO2 can be replaced by directly extracting astaxanthin into ethyl acetate. Extraction yields of 85% were reached, and 3.5 g of oleoresin could be extracted from 7.85 g homogenised H. pluvialis biomass using a CPE unit with 244 mL column volume. A techno-economic analysis was done for a hypothetical H. pluvialis production facility with an annual biomass output of 8910 kg. Four downstream scenarios were examined, comparing the novel process of astaxanthin extraction from homogenised cyst cells and germinated zoospores via CPE extraction with the conventional industrial process using in-house or supercritical CO2 extraction via an external service provider. After 10 years of operation, the highest net present value (NPV) was determined for the CPE extraction from germinated zoospores.

Highlights

  • The red carotenoid “astaxanthin” is used as a feed additive for colouring salmon, seafood, and poultry (Shah et al 2016)

  • H. pluvialis cyst cell disruption and germination The biomass for the centrifugal partition extractor (CPE) extraction experiment was provided by the project partner Sea & Sun Technology GmbH, Germany

  • The CPE extraction experiments were conducted using a column with 244 mL volume to evaluate the process performance, followed by a theoretical scale-up of the process to an industrial CPE unit with a 5-L column volume

Read more

Summary

Introduction

The red carotenoid “astaxanthin” is used as a feed additive for colouring salmon, seafood, and poultry (Shah et al 2016). It is increasingly used in the cosmetics and dietary supplement industry due to its oxidative characteristics and healthful properties (Li et al 2020; Astaxanthin Market Size, Share & Trends Analysis Report 2020). Astaxanthin can be chemically synthesised or biotechnologically produced with the microalgae H. pluvialis (Nguyen 2013). Due to the increased consumer demand for sustainable ecological products, the market for biotechnologically produced astaxanthin is expected to rise to $148.1 million US (Haematococcus Pluvialis Market 2021). The life cycle of H. pluvialis can be divided into mobile and non-mobile phases (Zhang et al 2017).

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call