Abstract
Matching of metal hydride pairs has a significant influence on performance of thermal energy storage (TES) system. This article conducts a complete techno-economic analysis of screening metal hydride pairs (MgH2&LaNiAl and MgH2&TiFeMn). A mathematical model is developed to calculate the energy consumption, which is solved by COMSOL Multiphysics v5.1. Firstly, thermodynamic matching is analyzed to judge the energy consumption qualitatively. Further, a cost model of thermal energy is established to estimate the energy consumption cost. It is found that the charging energy consumption cost of MgH2&LaNiAl system is reduced to be zero due to a good thermodynamic matching, whereas that of MgH2&TiFeMn system accounts for as high as 63.8% of the cycle energy consumption cost. Based on the life cycle economic analysis, matching of MgH2&TiFeMn is considered to be a better selection due to a smaller levelized thermal storage cost (28 USD/kWhth), where two major expenses are the capital cost and energy consumption cost, 74.3% and 19.3% respectively. Therefore, a matching principle is concluded that screening metal hydride pairs for TES should be considered in two ways: firstly, the hydrogen storage cost due to the expensive price of low temperature metal hydride; secondly, the thermodynamic matching, which determines the energy consumption cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.