Abstract

Distributed smart home systems using wireless communication are increasingly installed and operated in households. Their popularity is due to the ease of installation and configuration. This paper presents a comprehensive technical, quality, and energy analysis of several popular smart home modules. Specifically, it focuses on verifying their power consumption levels, both in standby and active mode, to assess their impact on the energy efficiency of building installations. This is an important aspect in the context of their continuous operation, as well as in relation to the relatively lower power of loads popular in buildings, such as LED lighting. The author presents the results of measurements carried out for seven different smart home modules controlling seven different types of loads. The analysis of the results shows a significant share of home automation modules in the energy balance; in particular, the appearance of reactive power consumption due to the installation of smart home modules is noteworthy. Bearing in mind all the threads of the analysis and discussion of the results of measurement experiments, a short SWOT analysis is presented, with an indication of important issues in the context of further development of smart systems and the Internet of Things with wireless communication interfaces, dedicated to home and building applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.