7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1287/opre.1100.0857
Copy DOIJournal: Operations Research | Publication Date: Feb 1, 2011 |
Citations: 40 |
Given a set of items with associated deterministic weights and random rewards, the adaptive stochastic knapsack problem (adaptive SKP) maximizes the probability of reaching a predetermined target reward level when items are inserted sequentially into a capacitated knapsack before the reward of each item is realized. This model arises in resource allocation problems that permit or require sequential allocation decisions in a probabilistic setting. One particular application is in obsolescence inventory management. In this paper, the adaptive SKP is formulated as a dynamic programming (DP) problem for discrete random rewards. The paper also presents a heuristic that mixes adaptive and static policies to overcome the “curse of dimensionality” in the DP. The proposed heuristic is extended to problems with normally distributed random rewards. The heuristic can solve large problems quickly, and its solution always outperforms a static policy. The numerical study indicates that a near-optimal solution can be obtained by using an algorithm with limited look-ahead capabilities.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.