Abstract

Abstract. Automated water sampling devices adapted to field operation have proven highly useful for environmental research as well as in the public and private sectors, where natural or artificial waters need to be tested regularly for compliance with environmental and health regulations. Such autosamplers are already available on the market in slightly differing versions, but none of these devices are capable of sealing the collected samples to prevent sample alteration by contamination, evaporation or gas exchange. In many sampling cases, however, this feature is essential, for instance for studying the hydrological cycle based on isotopes in rainwater, or for monitoring waters contaminated with toxic gases or other volatile compounds detrimental to biota and human health. Therefore, we have developed a new mobile autosampler, which injects water samples directly into airtight vials, thus preventing any sample alteration. Further advantages include low production costs, compact dimensions and low weight allowing for easy transport, a wide range of selectable sampling intervals as well as a low power consumption, which make it suitable for long-term applications even in remote areas and harsh (outdoor) conditions due to its heavy-duty water-proof casing. In this paper, we demonstrate (1) the sampler's mechanical functioning, (2) the long-term stability of the collected samples with regard to evaporation and gas exchange and (3) the potential of our device in a wide variety of applications drawing on laboratory and field experiments in different karst caves, which represent one of the most challenging sampling environments.

Highlights

  • IntroductionSampling natural waters (water bodies and rainwater), as well as artificial waters (including process and waste water) for subsequent hydrochemical and geochemical analysis, is indispensable for understanding the behaviour of natural and artificial waters, for determining their spatial and temporal variability (e.g. in the concentration of toxic compounds) as well as for determining their current state (e.g. Hiscock and Bense, 2014)

  • Sampling natural waters, as well as artificial waters for subsequent hydrochemical and geochemical analysis, is indispensable for understanding the behaviour of natural and artificial waters, for determining their spatial and temporal variability as well as for determining their current state (e.g. Hiscock and Bense, 2014)

  • With “GUARD” we have developed and tested an automated water sampler suited to field operation in remote areas and harsh conditions that injects the samples into airtight vials in order to prevent sample alteration from contamination, evaporation/condensation and/or gas exchange

Read more

Summary

Introduction

Sampling natural waters (water bodies and rainwater), as well as artificial waters (including process and waste water) for subsequent hydrochemical and geochemical analysis, is indispensable for understanding the behaviour of natural and artificial waters, for determining their spatial and temporal variability (e.g. in the concentration of toxic compounds) as well as for determining their current state (e.g. Hiscock and Bense, 2014). In most cases the properties and composition of the water under investigation change with time, for instance, the concentration of pollutants like heavy metals or polycyclic aromatics (Appelo and Postma, 2005). In these cases, it is necessary to repeat water sampling multiple times at short intervals and over a sufficiently long time period, increasing the logistical constraints When it comes to long-term monitoring of a site at relatively short intervals, manual sampling is definitely not a viable option anymore (Chapin, 2015)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call