Abstract

Abstract. Climate change has resulted in more frequent occurrences of extreme events, such as flooding and heavy snowfall, which can have a significant impact on densely populated or industrialised areas. Numerical models are used to simulate and predict these extreme events, enabling informed decision-making and planning to minimise human casualties and to protect costly infrastructure. LISFLOOD is an integrated hydrological model underpinning the European Flood Awareness System and Global Flood Awareness System (EFAS and GloFAS, respectively), developed by the Copernicus Emergency Management Service (CEMS). The CEMS_SurfaceFields_2022 dataset is a new set of high-resolution surface fields at 1 and 3 arcmin resolution (approximately 2 and 6 km at the Equator, respectively) based on a wide variety of high-resolution and up-to-date data sources. The 1 arcmin fields cover Europe, while the surface fields at 3 arcmin cover the global land surface (excluding Antarctica). The dataset encompasses (i) catchment morphology and river networks, (ii) land use, (iii) vegetation cover type and properties, (iv) soil properties, (v) lake information, and (vi) water demand. This paper details the complete workflow used to generate the CEMS_SurfaceFields_2022 fields, including the data sources and methodology. Whilst created together with upgrades to the open source LISFLOOD code, the CEMS_SurfaceFields_2022 fields can be used independently for a wide range of applications, including as input to hydrological, Earth system, or environmental models or for carrying out general analyses across spatial scales, ranging from global and regional levels to local levels (especially useful for regions outside Europe), expected to improve the accuracy, detail and realism of applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.