Abstract
The purpose of this study plant is to describe tests known as Engineered Barrier System Field Tests (EBSFT), which are to be conducted in the Exploratory Study Facility (ESF) at Yucca Mountain, Nevada. The EBSFT is designed to provide information on the interaction between waste packages (simulated by heated containers), the surrounding rock mass, and its vadose water. The Yucca Mountain site is being characterized to determine its suitability as a potential deep geological repository for high-level nuclear waste. Water is the main medium by which radioactive nuclides travel to the accessible environment. Therefore, the movement of water over the approximate 10,000--year lifetime required for radioactive nuclide decay must be understood. Development of a repository and emplacement of nuclear wastes impose stress loadings on the repository rock mass. The stress loadings include (1) thermal energy and irradiation from the waste packages, and (2) mechanical stress due to the mining of openings, and the transporting of waste canisters. The influence f the thermal stress may extend to all lithological units, including the saturated zone under the ground water table, in Yucca Mountain. In general, the purpose of this study is to investigate the movement of water in the rock mass under the influence of the thermal loading of the waste packages. Specifically, the study will investigate heat flow mechanism, relationship between boiling and dry-out, and the rewetting of the dry-out region when the repository is cooled down.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have