Abstract
A membrane bioreactor inoculated with commercial baker's yeast (Saccharomyces cerevisiae) (MBRy) integrated to an air-stripping/absorption (AS/AB) as pre-treatment (aiming ammonia recovery) or a post-treatment (polishment step) was assessed for the landfill leachate treatment. The effect of chemical oxygen demand (COD) and nitrogen (N) ratio (C:N) on the performance of the MBRy was also investigated. At high COD/N ratio, high organic matter removal in terms of COD (71 ± 4%) and ammonia removal (97 ± 3%) was observed. Lower COD/N ratio favored yeast growth in the mixed liquor even under adverse conditions. The results of ammonia removal and recovery, and economic analysis demonstrated that the best way to integrate the AS/BS processes is as pre-treatment of MBRy. The ammonia concentration in the AS/AB process feed was a key factor to achieve the market specification. Although pH and temperature adjustment were adequate to promote ammonia removal/recovery, the AS operation at high temperatures showed the highest ammonia removal rate (99%). Therefore, the integration of AS/AB with MBRy allows obtaining a permeate with a final concentration of 2902 ± 374 mg L−1 of COD and 9 ± 7.5 mg L−1 of ammonia. Although it was possible to reach the Brazilian discharge standard for ammonia (20 mg L−1), it was not possible to reach the standard for COD, where the remaining fraction is recalcitrant organic matter, requiring the integration of a physico-chemical process. It should be noted that the proposed route allowed recovery 7 kg of ammonia per m3 of treated leachate.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have