Abstract
AbstractThe Simplified Split Cantilever Beam (SSCB) is proposed in this work and compared with the Split Cantilever Beam (SCB) to obtain the tearing mode interlaminar fracture toughness. The materials considered are single‐fiber system composites and interply hybrid composites. For interply hybrid composites, three different types of stacking sequence for SSCB specimens, which are [0/0//0],[0/0//0]. and [0/0//0], are tested to compare their suitability. Finite element analysis combined with a modified crack closure integral has been applied to separate the different components of the strain‐energy release rate. In addition, the method of compliance calibration was used to calculate Gc values. The effects of crack growth, initial crack length, specimen width, and number of glass fiber plies were also studied. The results show that SSCB testing has a more dominant Mode III component and more stable Gc values than SCB testing. For SSCB testing, the crack growth and the specimen width for the range considered have no clear effects on the interlaminar fracture toughness, but the initial crack length should be carefully selected to obtain corrected values. The tearing mode interlaminar fracture toughness of interply hybrid composites is higher than that of carbon/epoxy composites, and the three different types of stacking sequence considered are all suitable to approximate the Mode III interlaminar fracture toughness for interply hybrid composites.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have