Abstract
Chronic dacryocystitis (CD) can result in severe complications and vision impairment due to ongoing microbial infections and persistent tearing. Tear fluid, which contains essential components vital for maintaining ocular surface health, has been investigated for its potential in the noninvasive identification of ocular biomarkers through metabolomics analysis. In this study, we employed UHPLC-MS/MS to analyze the tear metabolome of CD patients. UHPLC-MS/MS analysis of tear samples from CD patients revealed significant metabolic alterations. Compared with the control group, 298 metabolites were elevated, while 142 were decreased. KEGG pathway analysis suggested that these changes primarily affected arginine and proline metabolism, biosynthesis of amino acids, and phenylalanine biosynthesis in CD. Notably, 3-dehydroquinic acid, anthranilic acid, citric acid, and l-isoleucine emerged as potential biomarker candidates of CD with high diagnostic accuracy (AUC = 0.94). These findings suggest that tear fluid metabolism, particularly amino acid biosynthesis, plays a significant role in the pathogenesis of CD. Uncovering these metabolic products and pathways provides valuable insights into the mechanisms underlying CD and paves the way for the development of diagnostic tools and targeted therapies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.