Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by fat accumulation and inflammation. Epigallocatechin gallate (EGCG) has been proven to be effective against NAFLD, but its hepatoprotective mechanisms based on the "gut microbiota-barrier-liver axis" are still not fully understood. Herein, the results demonstrated that EGCG effectively ameliorated NAFLD phenotypes and metabolic disorders in rats fed a high-fat diet (HFD), and inhibited intestinal barrier dysfunction and inflammation, which is also supported in the experiment of Caco-2 cells. Moreover, EGCG could restore gut microbiota diversity and composition, particularly promoting beneficial microbes, including short-chain fatty acids (SCFAs) producers, such as Lactobacillus, and suppressing Gram-negative bacteria, such as Desulfovibrio. The microbial modulation raised SCFA levels, decreased lipopolysaccharide levels, inhibited the TLR4/NF-κB pathway, and strengthened intestinal barrier function via Nrf2 pathway activation, thereby alleviating liver steatosis and inflammation. Spearman's correlation analysis showed that 24 key OTUs, negatively or positively associated with NAFLD and metabolic disorders, were also reshaped by EGCG. Our results suggested that a combinative improvement of EGCG on gut microbiota dysbiosis, intestinal barrier dysfunction, and inflammation might be a potential therapeutic target for NAFLD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.