Abstract

Anti-CD20 monoclonal antibodies are major therapeutic agents for patients with follicular lymphoma and work through complement-mediated cytotoxicity and antibody-dependent cellular cytotoxicity. Optimization of antibody-dependent cellular cytotoxicity, in particular by amplifying its effectors, could further increase the efficacy of anti-CD20 monoclonal antibodies. We investigated the cytotoxic activity of Vγ9Vδ2 T cells against follicular lymphoma cells and whether this killing could be increased by promoting antibody-dependent cellular cytotoxicity with anti-CD20 monoclonal antibodies, in particular a type-II glycoengineered anti-CD20. Vγ9Vδ2 T cells were expanded in vitro in the presence of bromohydrin pyrophosphate (Phosphostim) and interleukin-2 and their ability to kill follicular lymphoma primary cells or cell lines was evaluated by flow cytometry cytotoxic T-lymphocyte assays in the presence or absence of three anti-CD20 monoclonal antibodies: the afucosylated GA101, the chimeric rituximab or the humanized ofatumumab. The ability of these cells to release perforin/granzyme and secrete interferon-γ when co-cultured with follicular lymphoma primary cells or cell lines in the presence or not of the three anti-CD20 monoclonal antibodies was also evaluated by CD107a staining and Elispot assays. Phosphostim and interleukin-2 expanded Vγ9Vδ2 T cells were cytotoxic to primary follicular lymphoma cells and their cytotoxic potential was dramatically increased by GA101, a type II glycoengineered anti-CD20 monoclonal antibody, and to a lesser extent, by rituximab and ofatumumab. The increased cytotoxicity was associated with increased secretion of perforin/granzyme and interferon-γ. In-vitro expanded Vγ9Vδ2 T cells efficiently kill primary follicular lymphoma cells and express CD16; anti-CD20 monoclonal antibodies, in particular GA101, dramatically increase the cytotoxic activity of expanded Vγ9Vδ2 T cells. These preclinical results prompt the development of clinical trials using this antibody dependent cellular cytotoxicity property of Vγ9Vδ2 T cells and anti-CD20 monoclonal antibodies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call