Abstract

Immunotherapy using anti-tumor antibodies has become a feasible alternative for treating patients with lymphoma. These anti-tumor antibodies may target a specific receptor to disrupt proliferative signaling or mediate their anti-tumor effect by antibody-dependent cellular cytotoxicity (ADCC) or complement-mediated killing. The CD40 antigen is a good target for such anti-tumor antibodies for several reasons: CD40 is expressed on the vast majority of the non-Hodgkin's B cell lymphomas and it has been proposed that the CD40/CD40L interaction provides a critical survival or proliferative signal for B cell lymphoma, especially the low-grade follicular lymphoma. In addition, B lymphoma cell lines become less sensitive to chemotherapy-induced apoptosis after CD40 cross-linking in an in vitro study. Therefore, an anti-CD40 antagonist that disrupts the CD40/CD40L interaction and mediates effector mechanism could have a therapeutic advantage. In this report, we describe a fully human anti-CD40 antagonistic IgG1 monoclonal antibody, CHIR-12.12 that was generated from mice with a human immunoglobulin gene loci (XenoMouse®mice, Abgenix Inc.). We first compared the antigen expression level of CD40 to the level of CD20, the target for rituximab, on primary lymphoma cells. While the expression level of CD40 was similar between different samples of primary follicular lymphoma cells, it was 10 fold less than the level of CD20. The expression of CD40 and CD20 on chronic lymphocytic leukemia/small lymphocytic lymphoma cells (CLL/SLL) was more variable. However, the level of CD20 was still significantly higher than the level of CD40 in all samples tested (2.4 to 13 fold). While CHIR-12.12 binds to primary lymphoma cells similarly to several other anti-CD40 antibodies, CHIR-12.12 did not induce proliferation of these primary tumore cells. By contrast, an agonist anti-CD40 antibody induced proliferation of these lymphoma cells up to 6-fold over baseline. To study the ability of CHIR-12.12 to interrupt the CD40-CD40L interaction, we cultured lymphoma cells with CD40L-transfected feeder cells in the presence of control IgG1, CHIR-12.12 or rituximab. In this system, the lymphoma cells proliferate in response to CD40-CD40L interaction. The addition of rituximab did not influence the proliferation. However, CHIR-12.12 inhibited the proliferation of follicular lymphoma and of CLL/SLL cells in a dose-dependent manner. The inhibition was observed with antibody concentration at 1 μg/ml and reached maximum of 90% inhibition at 10 μg/ml. We then evaluated the ability of CHIR-12.12 to elicit complement-mediated killing or ADCC. In vitro, rituximab induced complement-mediated cytotoxicity, while CHIR-12.12 did not. However, both CHIR-12.12 and rituximab induced effective ADCC of primary follicular lymphoma cells using purified NK cells from a healthy donor. Even though the level of CD40 is 10-fold less than the level of CD20 on the cell surface of these tumor cells, CHIR-12.12 induced the same degree of ADCC killing as did rituximab. Thus, this novel antagonist CHIR-12.12 antibody both blocks tumor-stimulatory CD40/CD40L interaction and mediates ADCC in the presence of a low number of target antigen. Our results support further development of this antibody to treat patients with B cell lymphoma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call