Abstract

Mobile edge computing (MEC) emerges as an appealing paradigm to provide time-sensitive computing services for industrial Internet of Things (IIoT) applications. How to guarantee truthfulness and budget-balance under locality constraints is an important issue to the allocation and pricing design of the MEC system. In this paper, we propose a truthful combinatorial double auction mechanism, which integrates the padding concept and the efficient pricing strategy to guarantee desirable properties in constrained MEC environments. This mechanism takes into account the locality characteristics of the MEC systems, where mobile devices (MDs) only offload tasks to edge servers (ESs) in the proximity with various requirements, and ESs only serve their neighboring MDs with limited resources. To be specific, for allocation, a linear programming (LP)-based padding method is used to obtain the near-optimal solution in the polynomial time. For pricing, a critical-value-based pricing strategy and a VCG-based pricing strategy are designed for MDs and ESs to achieve truthfulness and budget-balance. Our theoretical analysis confirms that TCDA is able to hold a set of desirable economic properties, including truthfulness, individual rationality, and budget-balance. Furthermore, simulation results validate the theoretical analysis, and verify the effectiveness and efficiency of TCDA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.