Abstract
This paper addresses the growing need for mechanisms supporting intra-node application composition in high-performance computing (HPC) systems. It provides a novel shared memory interface that allows composite applications, two or more coupled applications, to share internal data structures without blocking. This allows independent progress of the applications such that they can proceed in a parallel, overlapped fashion. Composite applications using in-node shared memory can reduce the amount of data to be communicated between nodes, allowing checkpointing and data reduction or analytics to be performed locally and in parallel. The approach is implemented in Linux, and evaluated using benchmarks that represent typical composite applications on a large HPC testbed. The results show that the proposed approach significantly outperforms the traditional ones (up to a 15-fold speed increase on a 200 node machine).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have