Abstract

Mobile ad hoc network (MANET) is a miscellany of versatile nodes that communicate without any fixed physical framework. MANETs gained popularity due to various notable features like dynamic topology, rapid setup, multihop data transmission, and so on. These prominent features make MANETs suitable for many real-time applications like environmental monitoring, disaster management, and covert and combat operations. Moreover, MANETs can also be integrated with emerging technologies like cloud computing, IoT, and machine learning algorithms to achieve the vision of Industry 4.0. All MANET-based sensitive real-time applications require secure and reliable data transmission that must meet the required QoS. In MANET, achieving secure and energy-efficient data transmission is a challenging task. To accomplish such challenging objectives, it is necessary to design a secure routing protocol that enhances the MANET’s QoS. In this paper, we proposed a trust-based multipath routing protocol called TBSMR to enhance the MANET’s overall performance. The main strength of the proposed protocol is that it considers multiple factors like congestion control, packet loss reduction, malicious node detection, and secure data transmission to intensify the MANET’s QoS. The performance of the proposed protocol is analyzed through the simulation in NS2. Our simulation results justify that the proposed routing protocol exhibits superior performance than the existing approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.