Abstract

BackgroundPhototherapy has significant potential as an effective treatment for cancer. However, the application of a multifunctional nanoplatform for photodynamic therapy (PDT) and photothermal therapy (PTT) at a single excitation wavelength remains a challenge.Materials and MethodsThe double emulsion solvent evaporation method was used to prepare toluidine blue@poly lactic-co-glycolic acid (TB@PLGA) nanoparticles (NPs). The biocompatibility of TB@PLGA NPs was evaluated, and a 660 nm luminescence was used as the light source. The photothermal effect, photothermal stability, and singlet oxygen yield of NPs in an aqueous solution verified the feasibility of NPs as a PTT/PDT synergistic therapy drug.ResultsTB@PLGA NPs were successfully prepared and characterized. In vitro experiments demonstrated that TB@PLGA NPs can cause massive necrosis of tumor cells and induce apoptosis through a photodynamic mechanism under 660 nm laser irradiation. The TB@PLGA NPs also achieved optimal tumor inhibition effect in vivo.ConclusionThe TB@PLGA NPs prepared in this study were applied as a dual-mode phototherapeutic agent under single laser irradiation. Both in vitro and in vivo experiments demonstrated the good potential of PTT/PDT for tumor inhibitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.